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Chapter 07: Properties of Expectation

Probability Theory: Properties of Expectations Expectation of Sums of Random Variables

Expectation of a Function of Random Variables

Proposition
Suppose that X and Y are RVs and g is a function of the two variables.

If X and Y have a joint pmf p(x ,y),

E [g(X ,Y )] = ∑
Y

∑
X

g(x ,y)p(x ,y)

If X and Y have a joint pdf f (x ,y),

E [g(X ,Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x ,y)f (x ,y) dx dy
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Probability Theory: Properties of Expectations Expectation of Sums of Random Variables

Example
An accident occurs at a point X that is uniformly distributed on a road
of length L. At the time of the accident, an ambulance is at a location
Y that is also uniformly distributed on the road. Assuming that X and
Y are independent, find the expected distance between the ambulance
and the point of the accident.

Solution
f (X ,Y ) = 1/L2, 0 < x < L, 0 < y < L

E [|X −Y |] = 1
L2

∫ L

0

∫ L

0
|x−y | dx dy

∫ L

0
|x−y | dx =

∫ y

0
(y −x) dx +

∫ L

y
(x−y) dx = 1

2L2−Ly +y2

E [|X −Y |] = 1
L2

∫ L

0

(
1
2L2−Ly +y2

)
dy =

L
3
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Probability Theory: Properties of Expectations Expectation of Sums of Random Variables

Expectation of Sums of Random Variables
In the continuous case

E [X +Y ] =
∫ ∞

−∞

∫ ∞

−∞
(x +y)f (x ,y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xf (x ,y) dy dx +

∫ ∞

−∞

∫ ∞

−∞
yf (x ,y) dx dy

=
∫ ∞

−∞
xfX (x) dx +

∫ ∞

−∞
yfY (y) dy

= E [X ]+E [Y ]

The same result holds in the discrete case.

In general,
We may show by a simple induction proof that if E [Xi ] is finite for all
i = 1,2, · · · ,n, then

E [X1 +X2 + · · ·+Xn] = E [X1]+E [X2]+ · · ·+E [Xn]
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Probability Theory: Properties of Expectations Expectation of Sums of Random Variables

Example
The sample mean
Let X1,X2, · · · ,Xn be i.i.d. RVs having distribution function F and ex-
pected value µ. Such a sequence of RVs is said to constitute a sample
from the distribution F . Compute the expected value of the sample mean,
E [X ], where

X =
1
n

n

∑
i=1

Xi

Solution

E [X ] = E

[
1
n

n

∑
i=1

Xi

]
=

1
n

E

[
n

∑
i=1

Xi

]

=
1
n

n

∑
i=1

E [Xi ] =
1
n

n

∑
i=1

µ

= µ
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Expectation of Products of Independent RVs
Proposition
If X and Y are independent, then, for any functions h and g,

E [g(X )h(Y )] = E [g(X )]E [h(Y )]

Proof
Suppose that X and Y are jointly continuous with joint density f (x ,y).
Then

E [g(X )h(Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x ,y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX (x)fY (y) dx dy

=
∫ ∞

−∞
g(x)fX (x) dx

∫ ∞

−∞
h(y)fY (y)dy

= E [g(X )]E [h(Y )]

The proof in the discrete case is similar.
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Covariance

Definition
The covariance between X and Y , denoted by Cov(X ,Y ), is defined by

Cov(X ,Y ) = E
[(

X −E [X ]
)(

Y −E [Y ]
)]

Cov(X ,Y ) = E
[(

X −E [X ]
)(

Y −E [Y ]
)]

= E
[
XY −E [X ]Y −XE [Y ]+E [X ]E [Y ]

]

= E [XY ]−E
[
E [X ]Y

]
−E

[
XE [Y ]

]
+E

[
E [X ]E [Y ]

]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ]+E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ]
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Covariance and Independence
If X and Y are independent

Cov(X ,Y ) = 0

The converse is not true!

Example
Let X be a RV such that

P{X = 0}= P{X = 1}= P{X =−1}= 1
3

and defining

Y =

{
0 if X 6= 0
1 if X = 0

Now, XY = 0, so E [XY ] = 0. Also, E [X ] = 0. Thus,

Cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = 0

However, X and Y are clearly not independent.
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Properties of Covariance

Proposition
1 Cov(X ,Y ) = Cov(Y ,X )

2 Cov(X ,X ) = Var(X )

3 Cov(aX ,Y ) = a Cov(X ,Y )

4 Cov




n

∑
i=1

Xi ,
m

∑
j=1

Yj


=

n

∑
i=1

m

∑
j=1

Cov(Xi ,Yj)

Proof
3 Cov(aX ,Y ) = E [aXY ]−E [aX ]E [Y ]

= aE [XY ]−aE [X ]E [Y ]

= a
(
E [XY ]−E [X ]E [Y ]

)

= a Cov(X ,Y )

c©2022 Prof. Hicham Elmongui 9 / 29

Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Properties of Covariance (cont’d)
Proof

4 Let µi = E [Xi ] and νj = E [Yj ]. Then

Cov




n

∑
i=1

Xi ,
m

∑
j=1

Yj


= E







n

∑
i=1

Xi −E

[
n

∑
i=1

Xi

]





m

∑
j=1

Yj −E




m

∑
j=1

Yj










= E



(

n

∑
i=1

Xi −
n

∑
i=1

E [Xi ]

)


m

∑
j=1

Yj −
m

∑
j=1

E [Yj ]







= E



(

n

∑
i=1

Xi −
n

∑
i=1

µi

)


m

∑
j=1

Yj −
m

∑
j=1

νj







= E




n

∑
i=1

(Xi −µi)
m

∑
j=1

(Yj −νj)



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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Properties of Covariance (cont’d)

Proof (cont’d)
4 · · · . Therefore,

Cov




n

∑
i=1

Xi ,
m

∑
j=1

Yj


= E




n

∑
i=1

(Xi −µi)
m

∑
j=1

(Yj −νj)




= E




n

∑
i=1

m

∑
j=1

(Xi −µi)(Yj −νj)




=
n

∑
i=1

m

∑
j=1

E
[
(Xi −µi)(Yj −νj)

]

=
n

∑
i=1

m

∑
j=1

Cov
(
Xi ,Yj

)

Thus, the covariance operation is additive.
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Variance of Sums of Random Variables

Var

(
n

∑
i=1

Xi

)
=

n

∑
i=1

Var(Xi)+2∑∑
i<j

Cov
(
Xi ,Yj

)

Proof
From parts 2 and 4 of the last proposition, upon taking Yj = Xj , j =
1,2, · · · ,n,

Var

(
n

∑
i=1

Xi

)
= Cov




n

∑
i=1

Xi ,
n

∑
j=1

Xj




=
n

∑
i=1

n

∑
j=1

Cov(Xi ,Xj)

=
n

∑
i=1

Var(Xi)+∑∑
i 6=j

Cov
(
Xi ,Xj

)

Each pair of indices i , j , i 6= j , appears twice in the double summation.
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Variance of Sums of Independent Random Variables
If X1,X2, · · · ,Xn are pairwise independent, in that Xi and Xj are indepen-
dent for i 6= j , then

Var

(
n

∑
i=1

Xi

)
=

n

∑
i=1

Var(Xi)

Example: Variance of sample mean
Let X1,X2, · · · ,Xn be i.i.d. random variables having expected value µ
and variance σ2. Find the variance of the sample mean, Var(X ).

Solution

Var(X ) = Var

(
1
n

n

∑
i=1

Xi

)
=

(
1
n

)2

Var

(
n

∑
i=1

Xi

)

=
1
n2

n

∑
i=1

Var(Xi) =
1
n2

n

∑
i=1

σ2 =
σ2

n
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Example: The Sample Variance
Let X1,X2, · · · ,Xn be i.i.d. RVs having expected value µ and variance σ2.
The quantities Xi −X , i = 1,2, · · · ,n, are called deviations, as they equal
the differences between the individual data and the sample mean, X .
The random variable

S2 =
1

n−1

n

∑
i=1

(Xi −X )2

is called the sample variance. Find the E [S2].

Solution

(n−1)S2 =
n

∑
i=1

(
Xi −µ +µ−X

)2

(n−1)S2 =
n

∑
i=1

(
(Xi −µ)− (X −µ)

)2

=
n

∑
i=1

(Xi −µ)2 +
n

∑
i=1

(X −µ)2−2(X −µ)
n

∑
i=1

(Xi −µ)
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Example: The Sample Variance (cont’d)
Solution (cont’d)

(n−1)S2 =
n

∑
i=1

(Xi −µ)2 +
n

∑
i=1

(X −µ)2−2(X −µ)
n

∑
i=1

(Xi −µ)

=
n

∑
i=1

(Xi −µ)2 +n(X −µ)2−2(X −µ)n(X −µ)

=
n

∑
i=1

(Xi −µ)2−n(X −µ)2

Taking expectations of the preceding yields

(n−1)E [S2] =
n

∑
i=1

E
[
(Xi −µ)2

]
−nE

[
(X −µ)2

]

= nσ2−nVar(X ) (since E [X ] = µ)

= nσ2−σ2 = (n−1)σ2

E [S2] = σ2
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Correlation
Definition
The correlation of X and Y , denoted by ρ(X ,Y ), is defined, as long as
Var(X )Var(Y ) is positive, by

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X )Var(Y )

Properties of Correlation
1 −1≤ ρ(X ,Y )≤ 1 2 ρ(X ,Y ) =±1 ⇐⇒ Y = a±bX

Interpretation
The correlation coefficient is a measure of the degree of linearity be-
tween X and Y . A value of ρ(X ,Y ) near ±1 indicates a high degree of
linearity, whereas a value near 0 indicates that such linearity is absent.
A positive value of ρ(X ,Y ) indicates that Y tends to increase when X
does, whereas a negative value indicates that Y tends to decrease when
X increases. If ρ(X ,Y ) = 0, then X and Y are said to be uncorrelated.
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Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

Example

Let X1,X2, · · · ,Xn be i.i.d. RVs having variance σ2. Show that

Cov(Xi −X ,X ) = 0

Solution
Cov(Xi −X ,X ) = Cov(Xi ,X )−Cov(X ,X )

= Cov


Xi ,

1
n

n

∑
j=1

Xj


−Var(X )

=
1
n

n

∑
j=1

Cov
(
Xi ,Xj

)
−Var(X )

=
1
n ∑

j 6=i
Cov

(
Xi ,Xj

)
+

1
n

Var(Xi)−Var(X )

= 0+
σ2

n
− σ2

n
= 0

c©2022 Prof. Hicham Elmongui 17 / 29

Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

Significance of Moments

First Moment Second Central Moment

Third Standardized Moment Fourth Standardized Moment
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Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

Moments of the Number of Events that Occur

Let A1,A2, · · · ,An be events. An indicator variable Ii is defined for event
Ai such that

Ii =

{
1, if Ai occurs
0, otherwise

Let X be the number of these events that occur. Therefore,

X =
n

∑
i=1

Ii

E [X ] = E

[
n

∑
i=1

Ii

]
=

n

∑
i=1

E [Ii ] =
n

∑
i=1

P(Ai)
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Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

Moments of the Number of Events that Occur

Suppose we are interested in the number of pairs of events that occur.(
X
2

)
= ∑

i<j
Ii Ij

Taking expectations yields

E

[(
X
2

)]
= E


∑

i<j
Ii Ij


 = ∑

i<j
E
[
Ii Ij
]
= ∑

i<j
P(AiAj)

or

E
[

X (X −1)
2

]
= ∑

i<j
P(AiAj)

E [X 2]−E [X ] = 2∑
i<j

P(AiAj)

which yields E [X 2].
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Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

Moments of the Number of Events that Occur

By considering the number of distinct subsets of k events that all occur,
we see that (

X
k

)
= ∑

i1<i2<···<ik

Ii1 Ii2 · · · Iik

Taking expectations yields

E

[(
X
k

)]
= E


 ∑

i1<i2<···<ik

Ii1 Ii2 · · · Iik




= ∑
i1<i2<···<ik

E
[
Ii1 Ii2 · · · Iik

]

= ∑
i1<i2<···<ik

P(Ai1Ai2 · · ·Aik )

which yields E [X k ] in terms of previous moments.
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Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

Example
Moments of binomial random variables
Consider n independent trials, with each trial being a success with
probability p. Let Ai be the event that trial i is a success.

E

[(
X
k

)]
= ∑

i1<i2<···<ik

P(Ai1Ai2 · · ·Aik ) = ∑
i1<i2<···<ik

pk =

(
n
k

)
pk

or, equivalently,

E
[
X (X −1) · · ·(X −k +1)

]
= n(n−1) · · ·(n−k +1)pk

E [X ] = np

E [X (X −1)] = n(n−1)p2

E [X 2−X ] = n(n−1)p2

E [X 2] = n(n−1)p2 +np

E [X (X −1)(X −2)] = n(n−1)(n−2)p3

E [X 3−3X 2 +2X ] = n(n−1)(n−2)p3

E [X 3] = n(n−1)(n−2)p3 +3E [X 2]−2E [X ]

= n(n−1)(n−2)p3 +3n(n−1)p2 +np
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Probability Theory: Properties of Expectations Moment Generating Functions

Moment Generating Functions
Definition
The moment generating function M(t) of the RV X is defined by

M(t) = E [etX ], t ∈ R

Generating the moments
When M(t) exists, all of the moments of X can be obtained by succes-
sively differentiating M(t) and then evaluating the result at t = 0.

M ′(t) =





d
dt ∑

x
etxp(x) = ∑

x
xetxp(x) disc.RV

d
dt

∫ ∞

−∞
etx f (x) dx =

∫ ∞

−∞
xetx f (x) dx cont.RV





= E [XetX ]

M ′′(t) = E [X 2etX ]

M(n)(t) = E [X netX ]

E [X n] = M(n)(0), n ≥ 1
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Probability Theory: Properties of Expectations Moment Generating Functions

Example: Binomial Distribution

X ∼ Binomial(n,p)

M(t) = E [etX ]

=
n

∑
k=0

etk
(

n
k

)
pk (1−p)n−k

=
n

∑
k=0

(
n
k

)
(pet)k (1−p)n−k

= (pet +1−p)n

M ′′(t) = n(n−1)(pet +1−p)n−2(pet)2

+n(pet +1−p)n−1pet

E [X 2] = M ′′(0)

= n(n−1)(pe0 +1−p)n−2(pe0)2

+n(pe0 +1−p)n−1pe0

= n(n−1)p2 +np

M ′(t) = n(pet +1−p)n−1pet

E [X ] = M ′(0)

= n(pe0 +1−p)n−1pe0

= np

Var(X ) = E [X 2]−
(
E [X ]

)2

= n(n−1)p2 +np−n2p2

= np−np2

= np(1−p)
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Probability Theory: Properties of Expectations Moment Generating Functions

Example: Exponential Distribution

X ∼ Exponential(λ )

M(t) = E [etX ]

=
∫ ∞

0
etx λe−λx dx

= λ
∫ ∞

0
e−(λ−t)x dx

=
λ

λ − t
, for λ > t

M ′′(t) =
2λ

(λ − t)3

E [X 2] = M ′′(0)

=
2λ

(λ −0)3

=
2

λ 2

M ′(t) =
λ

(λ − t)2

E [X ] = M ′(0)

=
λ

(λ −0)2 =
1
λ

Var(X ) = E [X 2]−
(
E [X ]

)2

=
2

λ 2 −
1

λ 2

=
1

λ 2
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Probability Theory: Properties of Expectations Moment Generating Functions

Example: Normal Distribution

Z ∼ Normal(0,1)

MZ (t) = E [etZ ]

=
1√
2π

∫ ∞

−∞
etx e−x2/2 dx

=
1√
2π

∫ ∞

−∞
exp

{
−x2−2tx

2

}
dx

=
1√
2π

∫ ∞

−∞
exp

{
−(x− t)2

2
+

t2

2

}
dx

= et2/2 1√
2π

∫ ∞

−∞
e−(x−t)2/2 dx

= et2/2

X ∼ Normal(µ,σ2)

MX (t) = E [etX ]

= E [et(µ+σZ )]

= E [etµetσZ ]

= etµE [etσZ ]

= etµMZ (tσ)

= etµe(tσ)2/2

= exp

{
σ2t2

2
+µt

}
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Probability Theory: Properties of Expectations Moment Generating Functions

Properties of Moment Generating Functions
MGF of Sums of Indep. RVs
The moment generating function of the sum of independent RVs equals
the product of the individual moment generating functions.

Proof
Let X and Y be indep. RVs having MGF’s MX (t) and MY (t), respectively.

MX+Y (t) = E [et(X+Y )] = E [etX etY ] = E [etX ]E [etY ] = MX (t)MY (t)

Uniqueness Property of MGFs
If MX (t) exists and is finite in some region about t = 0, then the distribu-
tion of X is uniquely determined.

Example

MX (t) =
(

1
2

)10(
et +1

)10
⇐⇒ X ∼ Binomial(10,

1
2
)

c©2022 Prof. Hicham Elmongui 27 / 29

Probability Theory: Properties of Expectations Moment Generating Functions

Example

If X and Y are indep. normal RVs with respective parameters (µ1,σ2
1 )

and (µ2,σ2
2 ). Find the distribution of X +Y .

Solution
MX+Y (t) = MX (t)MY (t)

= exp

{
σ2

1 t2

2
+µ1t

}
exp

{
σ2

2 t2

2
+µ2t

}

= exp

{
(σ2

1 +σ2
2 )t

2

2
+(µ1 +µ2)t

}

X +Y ∼ Normal(µ1 +µ2,σ2
1 +σ2

2 )
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Probability Theory: Properties of Expectations Moment Generating Functions

Example
Compute the MGF of a chi-squared RV, χ2

n , with n degrees of freedom.

Solution

χ2
n = Z 2

1 +Z 2
2 + · · ·+Z 2

n

where Z1,Z2, · · · ,Zn are indep. standard normal RVs.

MZ 2(t) = E [etZ 2
]

=
1√
2π

∫ ∞

−∞
etx2

e−x2/2 dx

= σ × 1√
2πσ

∫ ∞

−∞
e−x2/2σ2

dx

= σ

where σ2 = 1/(1−2t)

Mχ2
n
(t) =

(
MZ 2(t)

)n

= σn

=

(
1√

1−2t

)n

Mχ2
n
(t) =

(
E [etZ 2

]
)n

E [etZ 2
] =

1√
2π

∫ ∞

−∞
etx2

e−x2/2 dx

= σ × 1√
2πσ

∫ ∞

−∞
e−x2/2σ2

dx where σ2 = (1−2t)−1

= σ
Mχ2(t) = σn

= (1−2t)−n/2
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