

Expectation of a Function of Random Variables

工

Proposition

Ĵ.

Suppose that *X* and *Y* are RVs and *g* is a function of the two variables. If *X* and *Y* have a joint pmf $p(x, y)$,

$$
E[g(X, Y)] = \sum_{Y} \sum_{X} g(x, y) p(x, y)
$$

If *X* and *Y* have a joint pdf *f*(*x*,*y*),

$$
E[g(X, Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) \, dx \, dy
$$

Example

An accident occurs at a point *X* that is uniformly distributed on a road of length *L*. At the time of the accident, an ambulance is at a location *Y* that is also uniformly distributed on the road. Assuming that *X* and *Y* are independent, find the expected distance between the ambulance and the point of the accident.

Probability Theory: Properties of Expectations Expectation of Sums of Random Variables

Solution *f*(*X*,*Y*) = 1/*L* 2 , 0 < *x* < *L*, 0 < *y* < *L ^E*[|*^X* [−]*Y*|] = ¹ *L* 2 Z *L* 0 Z *L* 0 |*x* −*y*| d*x* d*y* Z *L* 0 |*x* −*y*| d*x* = Z *y* 0 (*y* −*x*) d*x* + Z *L y* (*x* −*y*) d*x* = 1 2 *L* ² [−]*Ly* ⁺*^y* 2 *^E*[|*^X* [−]*Y*|] = ¹ *L* 2 Z *L* 0 1 2 *L* ² [−]*Ly* ⁺*^y* 2 d*y* = *L* 3 c 2022 Prof. Hicham Elmongui 3 / 29

Probability Theory: Properties of Expectations	Expectation of Sums of Random Variables	
In the continuous case	$E[X+Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) \, dx \, dy$	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) \, dy \, dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) \, dx \, dy$
$= \int_{-\infty}^{\infty} xf_X(x) \, dx + \int_{-\infty}^{\infty} yf_Y(y) \, dy$	$= E[X] + E[Y]$	
The same result holds in the discrete case.		
In general,		
We may show by a simple induction proof that if $E[X_i]$ is finite for all $i = 1, 2, \dots, n$, then		
$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$		

c 2022 Prof. Hicham Elmongui 4 / 29

Probability Theory: Properties of Expectations	Expectation of Sums of Random Variables	
Example	Expendations	Expectation of Sums of Random Variables
Let X_1, X_2, \dots, X_n be i.i.d. RVs having distribution function F and expected value μ . Such a sequence of RVs is said to constitute a sample from the distribution F . Compute the expected value of the sample mean, $E[\overline{X}]$, where		
$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$		
Solution	$E[\overline{X}] = E\left[\frac{1}{n} \sum_{i=1}^n X_i\right] = \frac{1}{n} E\left[\sum_{i=1}^n X_i\right]$	
$= \frac{1}{n} \sum_{i=1}^n E[X_i] = \frac{1}{n} \sum_{i=1}^n \mu$		
2022 Prol. Hicham Eimongui	5/29	

Probability Theory: Properties of Expectations Covariance, Variance, Variance of Sums, and Correlations Variance of Sums of Independent Random Variables

If X_1, X_2, \dots, X_n are pairwise independent, in that X_i and X_i are independent for $i \neq j$, then

$$
\text{Var}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \text{Var}(X_i)
$$

Example: Variance of sample mean

Let X_1, X_2, \dots, X_n be i.i.d. random variables having expected value μ and variance σ^2 . Find the variance of the sample mean, Var(\overline{X}).

Solution

$$
\text{Var}(\overline{X}) = \text{Var}\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \left(\frac{1}{n}\right)^2 \text{Var}\left(\sum_{i=1}^{n} X_i\right)
$$
\n
$$
= \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{\sigma^2}{n}
$$
\n(9.2022 Prot. Hicham Elmonguli

Example: The Sample Variance

Let X_1, X_2, \dots, X_n be i.i.d. RVs having expected value μ and variance σ^2 . The quantities $X_i - \overline{X}$, $i = 1, 2, \dots, n$, are called *deviations*, as they equal the differences between the individual data and the sample mean, *X*. The random variable

Probability Theory: Properties of Expectations Covariance, Variance of Sums, and Correlations

$$
S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}
$$

is called the *sample variance*. Find the $E[S^2]$.

Solution

Solution
\n
$$
(n-1)S^2 = \sum_{i=1}^n (X_i - \mu + \mu - \overline{X})^2
$$
\n
$$
(n-1)S^2 = \sum_{i=1}^n ((X_i - \mu) - (\overline{X} - \mu))^2
$$
\n
$$
= \sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n (\overline{X} - \mu)^2 - 2(\overline{X} - \mu) \sum_{i=1}^n (X_i - \mu)
$$
\nQ2022 Prol Hicham Elmongul

Probability Theory: Properties of Expectations

\n**Example:** The Sample Variance (cont'd)

\nSolution (cont'd)

\n
$$
(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \mu)^{2} + \sum_{i=1}^{n} (X - \mu)^{2} - 2(X - \mu) \sum_{i=1}^{n} (X_{i} - \mu)
$$
\n
$$
= \sum_{i=1}^{n} (X_{i} - \mu)^{2} + n(X - \mu)^{2} - 2(X - \mu) n(X - \mu)
$$
\n
$$
= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(X - \mu)^{2}
$$
\nTaking expectations of the preceding yields

\n
$$
(n-1)E[S^{2}] = \sum_{i=1}^{n} E\left[(X_{i} - \mu)^{2} \right] - nE\left[(X - \mu)^{2} \right]
$$
\n
$$
= n\sigma^{2} - n\text{Var}(X)
$$
\n
$$
= n\sigma^{2} - \sigma^{2}
$$
\n
$$
E[S^{2}] = \sigma^{2}
$$
\n62022 Prol. Hicham Elmongul

\n15/29

c 2022 Prof. Hicham Elmongui 19 / 29

Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

c 2022 Prof. Hicham Elmongui 28 / 29

Probability Theory: Properties of Expectations Moment Generating Functions Moment Generating Functions

 $2 + 2$ $\frac{1}{2} + \mu t$

 \mathcal{L}

ı

