

Expectation of a Function of Random Variables

Proposition

Suppose that *X* and *Y* are RVs and *g* is a function of the two variables. If *X* and *Y* have a joint pmf p(x, y),

L

$$E[g(X,Y)] = \sum_{Y} \sum_{X} g(x,y) p(x,y)$$

If X and Y have a joint pdf f(x, y),

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Expectation of Sufficient Properties of Expectations
Example

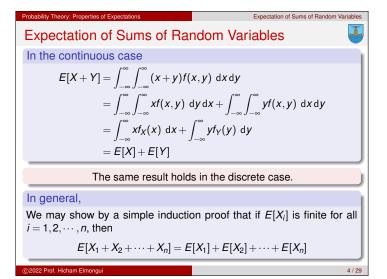
An accident occurs at a point X that is uniformly distributed on a road of length L. At the time of the accident, an ambulance is at a location Y that is also uniformly distributed on the road. Assuming that X and Y are independent, find the expected distance between the ambulance and the point of the accident.

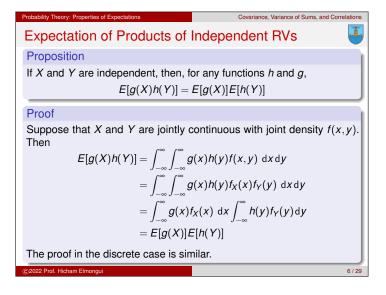
Solution
$$f(X, Y) = 1/L^2, \qquad 0 < x < L, \qquad 0 < y < L$$

$$E[|X - Y|] = \frac{1}{L^2} \int_0^L \int_0^L |x - y| \, dx \, dy$$

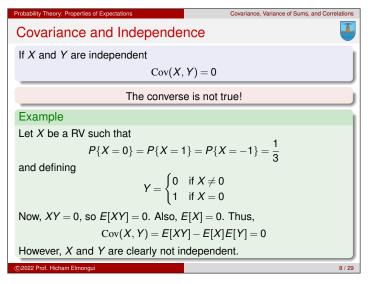
$$\int_0^L |x - y| \, dx = \int_0^y (y - x) \, dx + \int_y^L (x - y) \, dx = \frac{1}{2}L^2 - Ly + y^2$$

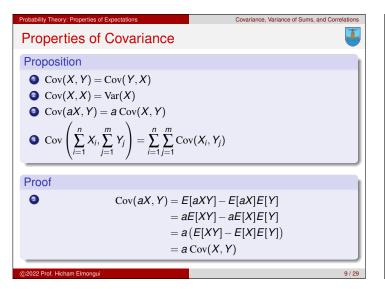
$$E[|X - Y|] = \frac{1}{L^2} \int_0^L \left(\frac{1}{2}L^2 - Ly + y^2\right) \, dy = \frac{L}{3}$$

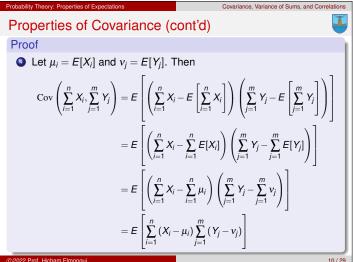


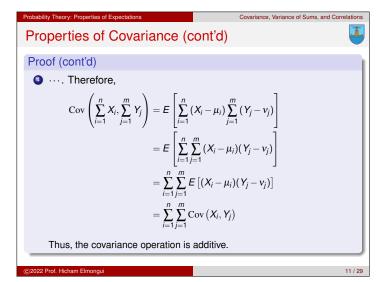


Probability Theory: Properties of Expectations	Covariance, Variance of Sums, and Correlations	
Covariance	—	
Definition		
The covariance between X and Y, denoted by $Cov(X, Y)$, is defined by		
$\operatorname{Cov}(X,Y) = E\left[\left(X - E[X]\right)\left(Y - E[Y]\right)\right]$		
$\operatorname{Cov}(X, Y) = E\left[\left(X - E[X]\right)\left(Y - E[Y]\right)\right]$		
= E [XY - E[X]Y - XE[Y] + E[X]E[Y]]		
= E[XY] - E[E[X]Y] - E[XE[Y]] + E[E[X]E[Y]]		
= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]		
= E[XY] - E[X]E[Y]		
©)2022 Prof. Hicham Elmongui	7/29	
	1720	









Probability Theory: Properties of Expectations	Covariance, Variance of Sums, and Correlations	
Variance of Sums of Random Variables		
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2\sum_{i < j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$		
Proof		
From parts 2 and 4 of the last proposition, upon taking $Y_j = X_j$, $j =$		
1,2,, <i>n</i> ,		
$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right)$		
$=\sum_{i=1}^n\sum_{j=1}^n\operatorname{Cov}(X_i,X_j)$		
$=\sum_{i=1}^{n}\operatorname{Var}(X_{i})+\sum_{i\neq j}\operatorname{Cov}\left(X_{i},X_{j}\right)$		
Each pair of indices $i, j, i \neq j$, appears twice in the double summation.		
©2022 Prof. Hicham Elmongui	12 / 29	

Variance of Sums of Independent Random Variables

If X_1, X_2, \dots, X_n are pairwise independent, in that X_i and X_j are independent for $i \neq j$, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i})$$

Example: Variance of sample mean

Let X_1, X_2, \dots, X_n be i.i.d. random variables having expected value μ and variance σ^2 . Find the variance of the sample mean, $Var(\overline{X})$.

Solution

$$\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \left(\frac{1}{n}\right)^{2}\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right)$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}(X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma^{2} \qquad = \frac{\sigma^{2}}{n}$$

Example: The Sample Variance

Let X_1, X_2, \dots, X_n be i.i.d. RVs having expected value μ and variance σ^2 . The quantities $X_i - \overline{X}$, $i = 1, 2, \dots, n$, are called *deviations*, as they equal the differences between the individual data and the sample mean, \overline{X} . The random variable

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

is called the sample variance. Find the $E[S^2]$.

Solution

$$(n-1)S^{2} = \sum_{i=1}^{n} \left(X_{i} - \mu + \mu - \overline{X}\right)^{2}$$

$$(n-1)S^{2} = \sum_{i=1}^{n} \left((X_{i} - \mu) - (\overline{X} - \mu)\right)^{2}$$

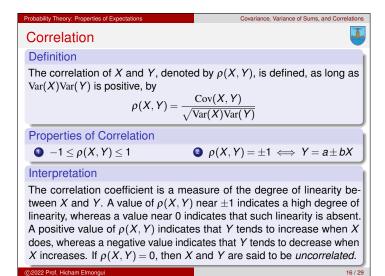
$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} + \sum_{i=1}^{n} (\overline{X} - \mu)^{2} - 2(\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu)$$
22 Prof. Hicham Elimongul 14/29

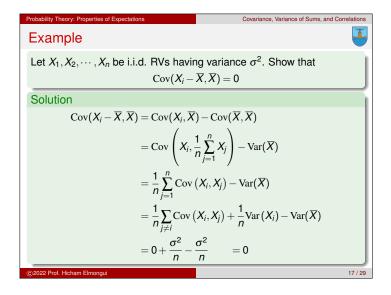
Potability Theory: Properties of Expectations
Example: The Sample Variance (cont'd)
Solution (cont'd)

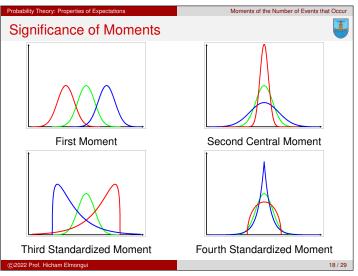
$$(n-1)S^2 = \sum_{i=1}^n (X_i - \mu)^2 + \sum_{i=1}^n (\overline{X} - \mu)^2 - 2(\overline{X} - \mu) \sum_{i=1}^n (X_i - \mu) = \sum_{i=1}^n (X_i - \mu)^2 + n(\overline{X} - \mu)^2 - 2(\overline{X} - \mu)n(\overline{X} - \mu) = \sum_{i=1}^n (X_i - \mu)^2 + n(\overline{X} - \mu)^2 - 2(\overline{X} - \mu)n(\overline{X} - \mu) = \sum_{i=1}^n (X_i - \mu)^2 - n(\overline{X} - \mu)^2$$
Taking expectations of the preceding yields

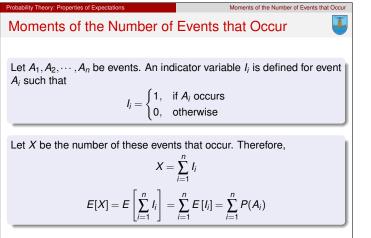
$$(n-1)E[S^2] = \sum_{i=1}^n E\left[(X_i - \mu)^2\right] - nE\left[(\overline{X} - \mu)^2\right] = n\sigma^2 - n\operatorname{Var}(\overline{X}) \qquad (since E[\overline{X}] = \mu) = n\sigma^2 - \sigma^2 = (n-1)\sigma^2$$

$$E[S^2] = \sigma^2$$









2 Prof. Hicham Eli

19 / 29

Probability Theory: Properties of Expectations
Moments of the Number of Events that Occur
Suppose we are interested in the number of pairs of events that occur.

$$\begin{pmatrix} X \\ 2 \end{pmatrix} = \sum_{i < j} l_i l_j$$
Taking expectations yields

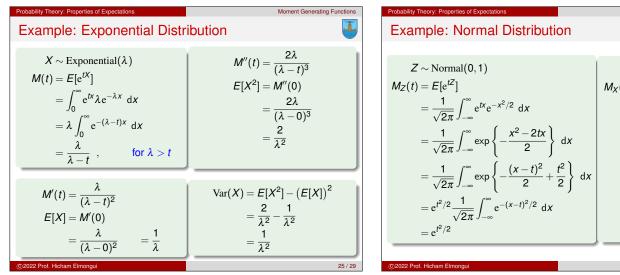
$$E\left[\binom{X}{2}\right] = E\left[\sum_{i < j} l_i l_j\right] = \sum_{i < j} E\left[l_i l_j\right] = \sum_{i < j} P(A_i A_j)$$
or

$$E\left[\frac{X(X-1)}{2}\right] = \sum_{i < j} P(A_i A_j)$$

$$E[X^2] - E[X] = 2\sum_{i < j} P(A_i A_j)$$
which yields $E[X^2]$.

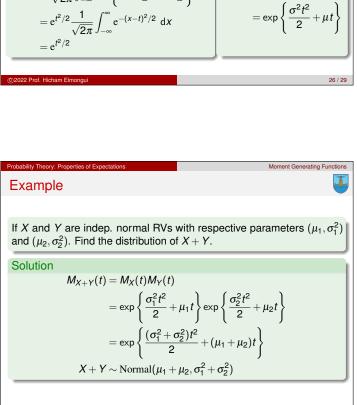
Protocolling Theory: Properties of Expectations
Moment Generating Functions
Definition
The moment generating function
$$M(t)$$
 of the RV X is defined by
 $M(t) = E[e^{tX}], \quad t \in \mathbb{R}$
Generating the moments
When $M(t)$ exists, all of the moments of X can be obtained by successively differentiating $M(t)$ and then evaluating the result at $t = 0$.
 $M'(t) = \begin{cases} \frac{d}{dt} \sum_{x} e^{tx} p(x) = \sum_{x} x e^{tx} p(x) & \text{disc.RV} \\ \frac{d}{dt} \int_{-\infty}^{\infty} e^{tx} f(x) dx = \int_{-\infty}^{\infty} x e^{tx} f(x) dx & \text{cont.RV} \end{cases} = E[Xe^{tX}]$
 $M''(t) = E[X^2e^{tX}]$
 $M''(t) = E[X^2e^{tX}]$
 $E[X^n] = M^{(n)}(0), \quad n \ge 1$

Probability Theory: Properties of Expectations	Moment Generating Functions
Example: Binomial Distribution	
$X \sim \text{Binomial}(n, p)$ $M(t) = E[e^{tX}]$ $= \sum_{k=0}^{n} e^{tk} {n \choose k} p^{k} (1-p)^{n-k}$ $= \sum_{k=0}^{n} {n \choose k} (pe^{t})^{k} (1-p)^{n-k}$ $= (pe^{t} + 1 - p)^{n}$	$M''(t) = n(n-1)(pe^{t} + 1 - p)^{n-2}(pe^{t})^{2}$ $+ n(pe^{t} + 1 - p)^{n-1}pe^{t}$ $E[X^{2}] = M''(0)$ $= n(n-1)(pe^{0} + 1 - p)^{n-2}(pe^{0})^{2}$ $+ n(pe^{0} + 1 - p)^{n-1}pe^{0}$ $= n(n-1)p^{2} + np$
$M'(t) = n(pe^{t} + 1 - p)^{n-1}pe^{t}$ $E[X] = M'(0)$ $= n(pe^{0} + 1 - p)^{n-1}pe^{0}$ $= np$ $©2022 \operatorname{Prol. Hicham Elmongui}$	$Var(X) = E[X^{2}] - (E[X])^{2}$ = $n(n-1)p^{2} + np - n^{2}p^{2}$ = $np - np^{2}$ = $np(1-p)$



Moment Generating Fu

nctions



Moment Generating F

 $X \sim \text{Normal}(\mu, \sigma^2)$

 $= E[e^{t(\mu+\sigma Z)}]$

 $= E[e^{t\mu}e^{t\sigma Z}]$

 $= e^{t\mu} E[e^{t\sigma Z}]$

 $= e^{t\mu} M_Z(t\sigma)$

 $=e^{t\mu}e^{(t\sigma)^2/2}$

 $M_X(t) = E[e^{tX}]$

L

Example Compute the MGF of a chi-squared RV, χ_n^2 , with <i>n</i> degrees of freedom. Solution $\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2$ where Z_1, Z_2, \dots, Z_n are indep. standard normal RVs. $M_{Z^2}(t) = E[e^{tZ^2}]$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-x^2/2} dx$ $= \sigma \times \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx$ $= \sigma$	Probability Theory: Properties of Expectations	Moment Generating Functions	
Solution $\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2$ where Z_1, Z_2, \dots, Z_n are indep. standard normal RVs. $M_{Z^2}(t) = E[e^{tZ^2}]$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-x^2/2} dx$ $= \sigma \times \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx$ $= \left(\frac{1}{\sqrt{1-2t}}\right)^n$			
$\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2$ where Z_1, Z_2, \dots, Z_n are indep. standard normal RVs. $M_{Z^2}(t) = E[e^{tZ^2}]$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-x^2/2} dx$ $= \sigma^n + \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx$ $= \left(\frac{1}{\sqrt{1-2t}}\right)^n$	Compute the MGF of a chi-squared	RV, χ_n^2 , with <i>n</i> degrees of freedom.	
where Z_1, Z_2, \dots, Z_n are indep. standard normal RVs. $M_{Z^2}(t) = E[e^{tZ^2}]$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-x^2/2} dx$ $= \sigma \times \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx$ $M_{\chi_n^2}(t) = (M_{Z^2}(t))^n$ $= \sigma^n$ $= \left(\frac{1}{\sqrt{1-2t}}\right)^n$	Solution		
$M_{Z^{2}}(t) = E[e^{tZ^{2}}]$ $= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^{2}} e^{-x^{2}/2} dx$ $= \sigma \times \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^{2}/2\sigma^{2}} dx$ $M_{\chi_{n}^{2}}(t) = (M_{Z^{2}}(t))^{n}$ $= \sigma^{n}$ $= \left(\frac{1}{\sqrt{1-2t}}\right)^{n}$	$\chi_n^2 = Z_1^2 + Z_2^2 + \dots + Z_n^2$		
$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-x^2/2} dx = \sigma^n$ $= \sigma \times \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx = \left(\frac{1}{\sqrt{1-2t}}\right)^n$	where Z_1, Z_2, \cdots, Z_n are indep. standard normal RVs.		
$= \sigma \times \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx \qquad $	$M_{Z^2}(t) = E[e^{tZ^2}]$	$M_{\chi^2_n}(t) = \left(M_{Z^2}(t)\right)^n$	
$= \sigma \times \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-x^2/2\sigma^2} dx \qquad $	$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{tx^2}e^{-x^2/2} dx$	ů –	
1		$=\left(\frac{1}{\sqrt{1-2t}}\right)''$	
	v =···•		
where $\sigma^2 = 1/(1-2t)$	where $\sigma^2 = 1/(1-2t)$		
©2022 Prof. Hicham Elmongui 29 / 29	, , , ,	29 / 29	

Properties of Moment Generating Functions

the product of the individual moment generating functions.

The moment generating function of the sum of independent RVs equals

Let X and Y be indep. RVs having MGF's $M_X(t)$ and $M_Y(t)$, respectively.

 $M_{X+Y}(t) = E[e^{t(X+Y)}] = E[e^{tX}e^{tY}] = E[e^{tX}]E[e^{tY}] = M_X(t)M_Y(t)$

If $M_X(t)$ exists and is finite in some region about t = 0, then the distribu-

 $M_X(t) = \left(\frac{1}{2}\right)^{10} \left(e^t + 1\right)^{10} \quad \iff \quad X \sim \text{Binomial}(10, \frac{1}{2})$

MGF of Sums of Indep. RVs

Uniqueness Property of MGFs

tion of X is uniquely determined.

Proof

Example