:/\*//WZ"\; Expectation of Sums of Random Variables
A fllixi Zﬂ@’f{;@ Expectation of a Function of Random Variables -
Probability Theory Proposition

Textbook: A First Course in Probability, Sheldon Ross, 2019. Suppose that X and Y are RVs and g is a function of the two variables.
If X and Y have a joint pmf p(x, y),

E[g(X7 Y)] = ;;g(x,y)p(x,y)

If X and Y have a joint pdf f(x, ),
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Probability Theory: Properties of Expectations

Expectation of Sums of Random Variables Expectation of Sums of Random Variables
Example T Expectation of Sums of Random Variables @
An accident occurs at a point X that is uniformly distributed on a road In the continuous case
of length L. At the time of the accident, an ambulance is at a location [
Y that is also uniformly distributed on the road. Assuming that X and ST = /_m /_w i) bl
Y are independent, find the expected distance between the ambulance _ /"" /°° /"“ /“’
and the point of the accident. Y WXf(X’y) s e myf(x,y) dxdy
Solution :[ Xfx(X) dX+[ yty(y) dy
f(X,Y)=1/L2, 0O<x<L O<y<lL = E[X]+E[Y]
1 /L oL ‘
EIX-Y) =7 /O /O Ix—y| dxdy The same result holds in the discrete case. J
L y L . ) In general,
/0 b= € =/0 =x) dx+/y W07y b= Gl =7y We may show by a simple induction proof that if E[Xj] is finite for all
i=1,2,---,n,then
1 s 172 2 L
EflIX-Y]]= P/o (zL —Ly+y ) dy=3 E[X1 4+ Xo+ -+ Xn] = E[X1] + E[Xo] + - -- + E[X]

Expectation of Sums of Random Variables Covariance, Variance of Sums, and Correlations
Example T Expectation of Products of Independent RVs @
The sample mean Proposition
Let Xi,Xz,---, X, be i.i.d. RVs having distribution function F and ex- If X and Y are independent, then, for any functions h and g,
pected value p. Such a sequence of RVs is said to constitute a sample E[g(X)h(Y)] = E[g(X)]E[h(Y)]
from the distribution F. Compute the expected value of the sample mean, -
E[X], where ) Proof

X = 1 Z Xi Suppose that X and Y are jointly continuous with joint density f(x, y).
mi= ) Then .
Solution ElgCOnMI= [~ [~ gGnw)f(x.y) dxdy
) ) e e
exi—£[ 1 x| = 1e[§x — [ ] aton)x)fn(y) dxdy
i= i= oo e
fa » = [_a0ix(x) ax [ _n(y)f(y)dy
==Y E[X]==) u
n =5k = E[g(X)IE[A(Y)]
=p ) The proof in the discrete case is similar.




[ Pobabity Treory: Properies ofEspeciatons ]
Covariance

Covariance, Variance of Sums, and Correlations

.

Definition
The covariance between X and Y, denoted by Cov(X, Y), is defined by
Cov(X,Y)=E [(xf EX]) (Y- E[Y])]

Cov(X,Y)=E [(x- EX]) (Y- E[Y])]
= E[XY — E[X]Y — XE[Y] + E[X]E[Y]]
= E[XY] - E[E[X]Y] — E [XE[Y]] + E [E[XIE[Y]]
= E[XY] - E[X]E[Y] - E[X]E[Y] + E[X]E[Y]
= E[XY] - E[X]E]Y]
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[ Pobabity Treory: Popers ofEspeciatons ]
Properties of Covariance

Covariance, Variance of Sums, and Correlations

.-

Proposition

@ Cov(X,Y)=Cov(Y,X)
@ Cov(X,X) = Var(X)

@ Cov(aX,Y)=aCov(X,Y)

0 con (zz Y,-) _§ f ety

i i=1j=1

Proof
Q Cov(aX, Y) = E[aXY] - E[aX]E[Y]
= aE[XY] - aE[X]E[Y]
= a(E[XY] - E[X]E[Y])
=aCov(X,Y)
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Properties of Covariance (contd)

Covariance, Variance of Sums, and Correlations

.

Proof (cont'd)
© ---. Therefore,

Cov <ZXf Y,-) —E|y. (Xi*ﬂi)i(y/‘*"/):|
== i=t =
5 {iimmmm}
= /:
= 21 i E (- )Y, )]
i=1j=
= Z ZCOV (Xi.Y))
i=1j=1

Thus, the covariance operation is additive.
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Covariance and Independence

Covariance, Variance of Sums, and Correlations

=

If X and Y are independent
Cov(X,Y)=0

The converse is not true! J

Example
Let X be a RV such that

PIX=0}=P{X=1}=P{X=-1}=]

3
and defining

0 ifX#0
- {1 ifX=0
Now, XY =0, so E[XY] =0. Also, E[X] =0. Thus,
Cov(X,Y)=E[XY]—E[X]E[Y]=0
However, X and Y are clearly not independent.

Properties of Covariance (cont'd)
Proof
© Let y; = E[X]] and v; = E[Y]]. Then

) flio) (e fi

Covariance, Variance of Sums, and Correlations

E(é&égmg<§nggwg
el (85 £0) (0 £9)

i=1 j=1

-E )":m-u,-))rf(v,-—v,-)}
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Variance of Sums of Random Variables

Var (Zn: )(/'> = Zn:Var(Xi)-i-ZZZCov (X, Y))
i=1 i=1

i<j

Covariance, Variance of Sums, and Correlations

=

Proof

From parts 2 and 4 of the last proposition, upon taking Y; = X, j =
1 ) 27 e, N,

= Var(X,-)-i—ZZCov (X, X))
= i#
Each pair of indices i.j, i # j, appears twice in the double summation.
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Variance of Sums of Independent Random Variablesﬁ

Covariance, Variance of Sums, and Correlations

If Xq,Xz,---, Xj are pairwise independent, in that X; and X; are indepen-
dent for i # j, then

n n
Var ( X,-) = Z Var(Xj)
i=1 i=1

Example: Variance of sample mean

Let Xi,X2,---, X, be i.i.d. random variables having expected value u
and variance o2. Find the variance of the sample mean, Var(X).

Solution
o 1 1\? n
Var(X) = Var B;X, = (E) Var ;X,
n 1 8 o2
Var(X) = = ¥ o2 =—
BT "

Probability Theory: Properties of Expectations

Example: The Sample Variance (cont'd) T
Solution (cont'd)

Covariance, Variance of Sums, and Correlations

Il
s
x
|
=]
+N
s
lagE}

(n—1)S? (X~ —2(X ) Y (Xi— 1)

)
)
)

(X — )2+ (X — )2 —2(X - p)n(X - )

I
s

s T

(Xi— )2 —n(X —p)?

Taking expectations of the preceding yields
n
(n=1)EIS?] = Y. E[(X - p)?] - nE [(X—)?]
=

= no? — nvar(X) (since E[X] = u)

=no?-02 =(n—-1)c?
E[S?]| =02
J
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Covariance, Variance of Sums, and Correlations

Example T

Let X1, Xo,--- , X, be i.i.d. RVs having variance ¢2. Show that
Cov(X;—X,X)=0

Solution
Cov(X; — X, X) = Cov(X;, X) — Cov(X, X)

== Y Cov (X, X)) + %Var(X,') — Var(X)

J#i
2 2
o O
=0+—-=" =0
n n
J

Example: The Sample Variance @

Let Xy, Xa,---, X, be i.i.d. RVs having expected value u and variance 2.
The quantities X; — X, i=1,2,---,n, are called deviations, as they equal
the differences between the individual data and the sample mean, X.
The random variable

Covariance, Variance of Sums, and Correlations

i & <
P=——Y (X—X)?
nf1,.; !

is called the sample variance. Find the E[S?].

Solution

n 2

(n-0)$2=Y (X -u+u-X)
=
In B .

(n-1)82 =Y ((X—p) - (X-n))
i=1
n n _ n

=Y X+ Y (X—p)?—2(X—p) Y (X — )

i=1 i=1 i=1 )

Correlation @
Definition

The correlation of X and Y, denoted by p(X, Y), is defined, as long as
Var(X)Var(Y) is positive, by

PIX,Y) =

Covariance, Variance of Sums, and Correlations

Cov(X,Y)

v/ Var(X)Var(Y)

Properties of Correlation

Q@ —1<p(X,Y)<1 Q p(X,Y)=+1 < Y=a+bX

Interpretation

The correlation coefficient is a measure of the degree of linearity be-
tween X and Y. A value of p(X, Y) near +1 indicates a high degree of
linearity, whereas a value near 0 indicates that such linearity is absent.
A positive value of p(X, Y) indicates that Y tends to increase when X
does, whereas a negative value indicates that Y tends to decrease when
X increases. If p(X,Y) =0, then X and Y are said to be uncorrelated.
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Probability Theory: Properties of Expectations Moments of the Number of Events that Occur

Significance of Moments @

2

First Moment Second Central Moment

<

Third Standardized Moment Fourth Standardized Moment
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Probability Theory: Properties of Expectations

Moments of the Number of Events that Occur

A; such that

if A; occurs
otherwise

1?
-

Moments of the Number of Events that Occur

Let A, Az,--- , A be events. An indicator variable /; is defined for event

g

Let X be the number of these events that occur. Therefore,

X= i I
i=1
EX]=E [)f /,] = éE[//] = éP(Ai)

i=1
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Probability Theory: Properties of Expectations

Moments of the Number of Events that Occur

Moments of the Number of Events that Occur @

Suppose we are interested in the number of pairs of events that occur.

4)-go

i<j
Taking expectations yields

E

i<j i<j I<J
or
£ [#] - %P(A,-A,-)

E[X?] - E[X] =2Y P(A/A)

i<j

which yields E[X?].

Probability Theory: Properties of Expectations

Moments of the Number of Events that Occur

we see that

(i)-

Taking expectations yields

(&)

Z li -y

i <lp<---<li

=[5 [ Z i l,-2~--l,-k‘|
i <lp<-<iy
= Z E [Iﬁ l, ""fk]

E

Moments of the Number of Events that Occur

g

By considering the number of distinct subsets of k events that all occur,

I <bp<-<lk
= Z P(A A, A)
i <bp<-<lk
which yields E[X*] in terms of previous moments. |
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Probability Theory: Properties of Expectations

Example

Moments of the Number of Events that Occur

>

Consider n independent trials, with each trial being a success with
probability p. Let A; be the event that trial / is a success.

(9=, EA()e

i <lp<--<lk
or, equivalently,
E[X(X=1)---(X=k+1)] =n(n—1)---(n—k+1)p*

Moments of binomial random variables

P(A; A, - Aj) =

E[X]=np | E[X(X—=1)(X-2)] = n(n—1)(n—2)p®
E[X(X —1)] = n(n—1)p? | E[X®—38X?+2X] = n(n—1)(n—2)p?
E[X? - X]=n(n—1)p?

E[X®] = n(n—1)(n—2)p® +3E[X?] —2E[X]

Probability Theory: Properties of Expectations

Moment Generating Functions

g

Moment Generating Functions

Definition

The moment generating function M(t) of the RV X is defined by
M(t) = E[e™],

Generating the moments

teR

When M(t) exists, all of the moments of X can be obtained by succes-
sively differentiating M(t) and then evaluating the result at t = 0.

i .e¥p(x) = Y xe¥p(x)

©2022 Prof. Hicham Elmongui

Probability Theory: Properties of Expectations

Example: Binomial Distribution

M(t) = E[e¥]

E[X?] = n(n—1)p? + np =n(n—1)(n—2)p®+3n(n—1)p?+np

22/29

Moment Generating Functions

>

M"(t) = n(n—1)(pe' +1—-p)"2(pe')?
+n(pe' +1—p)"" pe!
E[X?] = M"(0)

X ~ Binomial(n, p)

n
_y ok (”)pk 1-p)nk
& )PP =n(n—1)(pe® +1 - p)"(pe°)?
+n(pe®+1—p)™" pe°
=n(n—1)p?+np

disc.RV
M'(t) = - - = E[Xe!X]
d%/ eXf(x) dx:/ xe™f(x) dx cont.RV
M(t) = E[X?eX]
M) (t) = E[X"eX]
E[X"=M"(0), n>1 J
23/29

E[X] = M'(0) =n(n—1)p? + np— nPp?
= n(pe® +1-p)"~' pe’ =np—np?
=np =np(1—p)

M'(t) = n(pe' +1—p)"" pe’

Var(X) = E[X?] - (E[X))?

24/29




Probability Theory: Properties of Expectations

Moment Generating Functions
Example: Exponential Distribution ﬁ
X ~ Exponential(A) M"(t) = %
_ EletX -
= /o eXAe X dx 2
oo - —0)3
[0 o =
0 _Z
A A2
=11 for A >t )
M) = > Var(X) = E[X?] - (E[X])?
(A —1t)? 5 1
E[X]=M(0) =22 22
A 1 1
"0 "% =72 )
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Probability Theory: Properties of Expectations

Moment Generating Functions

Properties of Moment Generating Functions T
MGF of Sums of Indep. RVs

The moment generating function of the sum of independent RVs equals
the product of the individual moment generating functions.

4

Proof
Let X and Y be indep. RVs having MGF’s Mx(t) and My (t), respectively.
My y(t) = E[e!*+V)] = E[e%e!’] = E[eX]E[e™] = Mx(t)My(t)

Uniqueness Property of MGFs

If Mx(t) exists and is finite in some region about t = 0, then the distribu-
tion of X is uniquely determined.

v

Example

My(t) = (%)10(e'+1)10

©2022 Prof. Hicham Elmongui
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X ~ Binomial(10, %)
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Example W
Compute the MGF of a chi-squared RV, x2, with n degrees of freedom.J

Solution

W=Z+Z5++ 28
where Zy,2,,--- ,Z, are indep. standard normal RVs.

My (t) = E[e] Mz (1) = (Mz(t))"
_ 1T oee w2 —o"
by /4,6 e dx 1 )
=0 X 21 /me_xz/z‘72 dx :( 1—2t)
MO J—o

=0

where 6% =1/(1-2t)
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Probability Theory: Properties of Expectations

Moment Generating Functions
Example: Normal Distribution T
Z ~Normal(0,1) X ~ Normal(u, 62)

Mz(t) = E[e¥] Mx(t) = E[e™]
_ 1 /"" etxe_xz/z dx _ E[et(p+o'Z)]
V2 J—e , _ E[etuetaZ]
_ \/%/ exp {_x 221‘x} dx = et E[eto?)
T J—o
=e"M;(to)
= 1 /w exp {— Le—t)® + tz} dx — the(to)?/2
W, e 2 2 -

o 1 o { O'2t2
) / —(x-172/2 4 =exp{ —— +ut
—=e @ X 2

Vam J—e
=R
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Probability Theory: Properties of Expectations Moment Generating Functions

If X and Y are indep. normal RVs with respective parameters (uy,0?)
and (/,lg,dzz). Find the distribution of X + Y.

242 242
ot o5t
_exp{ L +,u1t}exp{27+ugt}

02+ 02)t?
:exp{%'f‘(m + )t

V.

Solution

» ’

X+ Y ~ Normal(iy + iz, 62 + 63)
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